1. Goldschmid, P. & Ahmad, A. (2024) Reinforcement learning based autonomous multi-rotor landing on moving platforms, Autonomous Robots, Springer. vol. 48, no. 13, June 2024. doi: https://doi.org/10.1007/s10514-024-10162-8
2. [Award Paper] Price, E., Black, M., & Ahmad, A. (2023) Viewpoint-driven Formation Control of Airships for Cooperative Target Tracking, IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3653-3660, June 2023. doi: https://doi.org/10.1109/LRA.2023.3264727 (Best Faculty Paper Award 2023: Best paper in 2023 from the Faculty of Aerospace Engineering and Geodesy at the University of Stuttgart)
3. Notter, S., Gall, C., Müller, G., Ahmad, A., & Fichter, W. (2023) Deep Reinforcement Learning Approach for Integrated Updraft Mapping and Exploitation, Journal of Guidance, Control, and Dynamics, vol. 46, no. 10, pp. 1997-2004, 2023. doi: https://doi.org/10.2514/1.G007572
4. Saini, N., Huang, C. -H. P., Black, M., & Ahmad, A. (2023) SmartMocap: Joint Estimation of Human and Camera Motion Using Uncalibrated RGB Cameras, IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3206-3213, June 2023, doi: https://doi.org/10.1109/LRA.2023.3264743
5. Bonetto, E., Goldschmid, P., Pabst, M., Black, M. J., & Ahmad, A., iRotate: Active visual SLAM for omnidirectional robots. Elsevier's Robotics and Autonomous Systems Journal (RAS). Volume 154, August 2022.
6. Saini, N., Bonetto, E., Price, E., Ahmad, A., & Black, M. J. AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation. IEEE Robotics and Automation Letters (RA-L), 7(2), 4805–4812. April 2022.
7. Tallamraju, R., Saini, N., Bonetto, E., Pabst, M., Liu, Y. T., Black, M., & Ahmad, A. AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning. IEEE Robotics and Automation Letters (RA-L), 5(4), 6678–6685, October 2020.
8. Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., & Ahmad, A. Active Perception based Formation Control for Multiple Aerial Vehicles. IEEE Robotics and Automation Letters (RA-L), 4(4), 4491--4498, October 2019.
9. Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., & Ahmad, A. Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles. IEEE Robotics and Automation Letters (RA-L), 3(4), 3193--3200, October 2018.
10. Ahmad, A., Lawless, G., & Lima, P. An Online Scalable Approach to Unified Multirobot Cooperative Localization and Object Tracking. IEEE Transactions on Robotics (T-RO), 33, 1184–1199, October 2017.
11. Ahmad, A., & Bülthoff, H. (2016). Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception, Elsevier's Robotics and Autonomous Systems Journal, 83, 275--286. https://doi.org/10.1016/j.robot.2016.06.002
12. Lima, P., Ahmad, A., Dias, A., Conceicão, A., Moreira, A., Silva, E., Almeida, L., Oliveira, L., & Nascimento, T. (2015). Formation control driven by cooperative object tracking, Elsevier's Robotics and Autonomous Systems Journal, 63(1), 68--79. https://doi.org/10.1016/j.robot.2014.08.018
13. Ahmad, A., Xavier, J., Santos-Victor, J., & Lima, P. (2014). 3D to 2D bijection for spherical objects under equidistant fisheye projection, Computer Vision and Image Understanding, 125, 172--183. https://doi.org/10.1016/j.cviu.2014.04.004
14. Ahmad, A., & Lima, P. (2013). Multi-robot cooperative spherical-object tracking in 3D space based on particle filters, Elsevier's Robotics and Autonomous Systems Journal, 61(10), 1084--1093. https://doi.org/10.1016/j.robot.2012.12.008